Tate Conjecture

Hideto Ishihara

January 8, 2018

e-mail: h.ishihara26@gmail.com

Abstract

Tate Conjecture is a well-known problem. We prove it. A new definition of the cycle map in étale cohomology theory on an arithmetic variety is introduced.

2010 Mathematics Subject Classification 14G40, 14C30

Keywords: Tate Conjecture, Hodge Conjecture, Analytic cycles, Harmonic forms

1 Introduction

Let X be a smooth projective variety over \mathbb{C} with a Hodge metric ω_0 (cf. [2], Chapter VII, Section 14, (14.1) Theorem). The de Rham cohomology group $H^k(X, \mathbb{C})$ of degree k decomposes as follows.

$$H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X, \mathbb{C}),$$ \hfill (1)

where $H^{p,q}(X, \mathbb{C})$ is the set of de Rham cohomology classes defined by (p, q)-forms on X (see [2], Chapter VI, Section 8.2, (8.5) Hodge decomposition theorem). Let $0 \leq p \leq n := \dim X$ be an integer. An analytic p-cycle is a finite formal \mathbb{Q}-linear combination of irreducible p-dimensional complex analytic sub-varieties. Let $C_p(X)$ be the set of de Rham cohomology classes defined by analytic p-cycles on X. Let $H^{2(n-p)}(X, \mathbb{Q})$ be the de Rham cohomology group of degree $2(n-p)$ with coefficients in \mathbb{Q}. We first prove the following theorem.

Theorem 1.

$$C_p(X) = H^{n-p,n-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q}).$$ \hfill (2)

The result is trivial if $p = 0, n$. By Lefschetz $(1, 1)$ theorem the result is known for $p = 1, n - 1$. (See [4].)

Let a, b be distinct prime numbers. Let $K \supset F_a$ be a field of finite extension

1
of F_{α}. Let V be a representation of $\text{Gal}(\overline{\mathbb{Q}}_b/\mathbb{Q}_b)$ over \mathbb{Q}_b. Let X_0 be a smooth projective scheme over K. Let $X_0(K)$ be the set of K-rational points of X_0. Let $Z_p(X_0(K))$ be the set of formal V-linear combinations of irreducible p-dimensional reduced subschemes of $X_0(K)$. Let \mathcal{K} be the algebraic separable closure of K and $X_0(\mathcal{K})$ the set of \mathcal{K}-rational points of X_0. Let $\Omega_{\mathcal{Q}}$ be the ring of integers of $\overline{\mathcal{Q}}$. Let $a \subset \Omega_{\mathcal{Q}}$ be a maximal ideal such that $a \cap \mathcal{Z} = a\mathcal{Z}$. There exists a natural surjective map from the quotient field of $\Omega_{\mathcal{Q}}/a$ to \mathcal{K}. For $\sigma \in \text{Gal}(\overline{\mathcal{Q}}/\mathcal{Q})$ such that $\sigma(a) \subset a$ let $\sigma \in \text{Gal}(K/F_{\alpha})$ be the induced element. Let

$$I_a := \{ \sigma \in \text{Gal}(\overline{\mathcal{Q}}/\mathcal{Q}) \mid \sigma(a) \subset a \text{ and } \sigma = \text{id} \}.$$ \hfill (3)

Let $C_{I_a} := \mathcal{Q}^{I_a}$. Let $\iota : K \hookrightarrow \mathcal{Q}^{I_a} \hookrightarrow \mathcal{Q}$. Let $X_0(\mathcal{C})$ be the set of \mathcal{C}-rational points of the reduced scheme induced from $X_0(K)$ via ι. Let $(X_0)_{\mathcal{C}} \rightarrow X(\mathcal{C})$ be the resolution of singularity. Let $Z_p((X_0)_{\mathcal{C}})$ be the set of formal V-linear combinations of irreducible p-dimensional reduced subschemes of $(X_0)_{\mathcal{C}}$. By Theorem 1 it is easy to prove

$$Z_p((X_0)_{\mathcal{C}}) \to H^{n-p,n-p}_{\text{et}}((X_0)_{\mathcal{C}}, V)$$ \hfill (4)

is surjective. Let $C_p((X_0)_{\mathcal{C}})$ be the image of $Z_p((X_0)_{\mathcal{C}})$ under this map. Let $H^{n-p,n-p}_{\text{et}}((X_0)_{\mathcal{C}}, V)$ be the image of the map

$$H^{n-p,n-p}_{\text{et}}((X_0)_{\mathcal{C}}, V) \to H_{\text{et}}((X_0)_{\mathcal{C}}, V) \to H_{\text{et}}(X_0(\mathcal{K}), V).$$ \hfill (5)

Let $\text{Gal}(\mathcal{K}/K)$ act on the set $C_p((X_0)_{\mathcal{C}})^{I_a}$ naturally. This induces an action of $\text{Gal}(\mathcal{K}/K)$ on $H^{n-p,n-p}_{\text{et}}(X_0(\mathcal{K}), V)$ via the surjective map

$$C_p((X_0)_{\mathcal{C}}) \to H^{n-p,n-p}_{\text{et}}((X_0)_{\mathcal{C}}, V) \to H^{n-p,n-p}_{\text{et}}((X_0)_{\mathcal{C}}, V)^{I_a} \to \downarrow$$
$$C_p((X_0)_{\mathcal{C}})^{I_a} \to \downarrow H^{n-p,n-p}_{\text{et}}(X_0(\mathcal{K}), V).$$ \hfill (6)

Let

$$\mathcal{P}_K : \begin{array}{c} Z_p((X_0)_{\mathcal{C}}) \to H^{n-p,n-p}_{\text{et}}((X_0)_{\mathcal{C}}, V) \\
\uparrow \quad \downarrow \\
Z_p(X_0(K)) \quad H^{n-p,n-p}_{\text{et}}(X_0(\mathcal{K}), V)^{\text{Gal}(\mathcal{K}/K)} \end{array}.$$ \hfill (7)

Two elements Γ_1, Γ_2 of $Z_p(X_0(K))$ is numerically equivalent if

$$\mathcal{P}_K(\Gamma_1) \cup \mathcal{P}_K(\Delta) = \mathcal{P}_K(\Gamma_2) \cup \mathcal{P}_K(\Delta)$$ \hfill (8)

for any $\Delta \in Z_{n-p}(X_0(K))$. In this case we write $\Gamma_1 \sim \Gamma_2$. We prove the following well-known theorem (see e.g. [3]).

Theorem 2 (Tate Conjecture). The cycle map

$$C_p((X_0)_{\mathcal{C}}) \to H^{n-p,n-p}_{\text{et}}((X_0)_{\mathcal{C}}, V) \to \downarrow Z_p(X_0(K))/\sim \to H^{n-p,n-p}_{\text{et}}(X_0(\mathcal{K}), V)^{\text{Gal}(\mathcal{K}/K)}$$ \hfill (9)

is surjective.
It is proposed by John Tate (published in 1965) and is a central problem of arithmetic algebraic geometry (see [5]).

The proof proceeds as follows:

As above the result is known for \(p = 0, n \). Let \(1 \leq p \leq n - 1 \) be an integer. We show that

\[
C_p(X) \supset H^{n-p,n-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q}).
\]

(10)

The other inclusion is trivial. It suffices to show that for any element \([\omega] \) of RHS there exists a global analytic \(p \)-cycle \(\Gamma \) on \(X \) such that

\[
[\Gamma] = [\omega]
\]

as de Rham cohomology classes on \(X \).

Let \(Y \subset X \). The restrictions to \(Y \) of global analytic \(p \)-cycles \(\Gamma = \sum c_i \Gamma_i \) are \(\Gamma \cap Y := \sum c_i (\Gamma_i \cap Y) \). Two restrictions \(\Delta_1, \Delta_2 \) to \(Y \) of global analytic \(p \)-cycles are equivalent if

\[
\int_{\Delta_1} \eta = \int_{\Delta_2} \eta.
\]

(12)

for any closed \((p,p) \)-form \(\eta \) on \(X \). Let \(C_p(Y) \) be the set of equivalence classes defined by the restrictions to \(Y \) of global analytic \(p \)-cycles.

A complexified analytic \(p \)-cycle is a finite formal \(\mathbb{C} \)-linear combination of irreducible \(p \)-dimensional complex analytic subvarieties. An equivalence class defined by the restriction to \(Y \) (\(Y \subset X \)) of a global complexified analytic \(p \)-cycle and the set \(C_p(Y) \otimes \mathbb{C} \) of equivalence classes defined by the restrictions to \(Y \) of global complexified analytic \(p \)-cycles are defined similarly.

Let \(1 \leq p \leq n - 1 \) be an integer. Let \(B_r(x) \) denote a closed ball with boundary in some coordinate and \(\mathcal{U} \) be the set of such balls (the choice of a coordinate also varies). Let

\[
\mathcal{U}|_{B_r(x)} := \{ U \subset B_r(x) \mid x \in U^0, U \in \mathcal{U} \}.
\]

(13)

Two restrictions \(\omega_1, \omega_2 \) of global harmonic forms are equivalent if

\[
\int_{B_r(x)} \omega_1 \wedge \eta = \int_{B_r(x)} \omega_2 \wedge \eta
\]

(14)

for any closed form \(\eta \) on \(X \). Let \(H^{*,*}(B_r(x), \mathbb{C}) \) be the set of equivalence classes of the restrictions to \(B_r(x) \) of global harmonic \((*,*)\)-forms. Let \([\Gamma] \in \[

\]
\[C_p(B_r(x)^\circ) \otimes \mathbb{C} \text{ and } [\eta] \in H^{p,p}(B_r(x)^\circ, \mathbb{C}). \text{ Let} \]
\[\int_{\Gamma} [\eta] := \{ (U, \frac{1}{|U|} \int_U [\Gamma]|_U \wedge [\eta]|_U) \} \text{ if } \forall \eta \in \mathbb{U}|_{B_r(x)^\circ}. \]

Then for sufficiently small \(r > 0 \)
\[C_p(B_r(x)^\circ) \otimes \mathbb{C} \times H^{p,p}(B_r(x)^\circ, \mathbb{C}) \to \text{Map}(\mathbb{U}|_{B_r(x)^\circ}, \mathbb{C}) \]
\[([\Gamma], [\eta]) \mapsto \int_{\Gamma} [\eta] \]

is a nondegenerate bilinear map. Indeed it suffices to consider \([\Gamma] \in C_p(B_r(x)^\circ) \otimes \mathbb{C}\) defined by the restrictions of global analytic \(p \)-cycles of which components are smooth on \(B_r(x)^\circ \).

The tangent space of a \(C^1 \)-manifold \(\Delta \) at \(x \in \Delta \) is denoted by \(T_x \Delta \). Two finite formal \(\mathbb{C} \)-combinations \(\sum_l \xi_l \Gamma_l, \sum_{l'} \xi_{l'} \Gamma_{l'} \) (\(\xi_l, \xi_{l'} \in \mathbb{C} \)) of \(C^2 \)-manifolds \(\{ \Gamma_l \} \), \(\{ \Gamma_{l'} \} \) intersect transversally if \(T_x \Gamma_l \not\subset T_x \Gamma_{l'} \) and \(T_x \Gamma_l \not\supset T_x \Gamma_{l'} \) for any \(l, l' \) and for any \(x \in \Gamma_l \cap \Gamma_{l'} \).

Let \(\omega \) be a harmonic \((n-p,n-p)\)-form on \(X \) such that \([\omega] \in H^{n-p,n-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q}) \). Note that \(X \) is compact and that \(H^{\ast,\ast}(B_r(x)^\circ, \mathbb{C}) \) is finite dimensional. By the above argument there exist a finite cover \(\{ U_\lambda \}_{\lambda=1}^A \) consisting of closed balls with boundary and \([\Gamma_\lambda] \in C_p(U_\lambda) \otimes \mathbb{C} \) \((1 \leq \lambda \leq A)\) defined by the restriction of a global analytic \(p \)-cycle of which components are smooth on \(U_\lambda \) satisfying the following: (i) for any global harmonic \((p,p)\)-form \(\eta \) on \(X \)
\[\int_{\Gamma_\lambda} [\eta]|_{U_\lambda} = \int_{U_\lambda} [\omega]|_{U_\lambda} \wedge [\eta]|_{U_\lambda}, \]
and (ii) if \(U_\lambda \cap U_\mu \neq \emptyset \) then for any global harmonic \((p,p)\)-form \(\eta \) on \(X \)
\[\int_{\Gamma_\lambda \cap U_\mu} [\eta]|_{U_\lambda \cap U_\mu} = \int_{\Gamma_\lambda \cap U_\mu} [\eta]|_{U_\lambda \cap U_\mu}. \]

Further since \(\Gamma_\lambda \)'s are smooth, shrinking \(U_\lambda \)'s, the above are taken so that \(\Gamma_\lambda \)
and \(\partial U_\lambda \) intersect transversally.

We construct a global complexified analytic \(p \)-cycle.

\([\{ \Gamma_\lambda \}_{\lambda=1}^A \] defines a de Rham cohomology class \([\omega] \). The restrictions \(\Gamma_\lambda \) of global complexified analytic \(p \)-cycles correspond to those \(\Phi_\lambda \) of global harmonic \((n-p,n-p)\)-forms. Note that \(\Gamma_\lambda \) is defined on a closed ball \(U_\lambda \) and that \(\Gamma_\lambda \) intersects with \(\partial U_\lambda \) transversally. Thus \(\Phi := \Phi_1 \) is inductively extended to \(X \) so that \([\Phi - [\omega]]|_{U_1 \cup \cdots \cup U_\lambda} = 0 \) and there exists a restriction \(\Gamma \) of global complexified analytic \(p \)-cycle such that \([\Gamma]|_{U_1 \cup \cdots \cup U_\lambda} = [\Phi]|_{U_1 \cup \cdots \cup U_\lambda} \). From \(X = U_1 \cup \cdots \cup U_\lambda \), it is concluded that there exists a de Rham cohomology class \([\Gamma] \) defined by a
global complexified analytic p-cycle such that $[\Gamma] - [\omega] = [\Phi] - [\omega] = 0$ on X.

We construct a desired analytic p-cycle on X.

From above it is obtained that for any $[\omega] \in H^{n-p,n-p}(X,\mathbb{C}) \cap H^{2(n-p)}(X,\mathbb{Q})$ there exists $[\Gamma] \in C_p(X) \cap \mathbb{C}$ such that $[\Gamma] = [\omega]$. X is a smooth projective variety over \mathbb{C} with the Hodge metric ω_0 and thus Γ is actually an analytic p-cycle on X. The assertion of Theorem 1 follows.

Remark 3. From [2], Chapter II, Section 8.2, (8.10) Chow's theorem, the set of analytic p-cycles on X and that of algebraic ones coincide.

Let

$$\mathcal{P}_R : Z_p((X_0)_\mathbb{C}) \to H^{n-p,n-p}_{\text{et}}((X_0)_\mathbb{C},\mathbb{V})$$

$$\uparrow$$

$$Z_p(X_0(\mathbb{K})) \to H^{n-p,n-p}_{\text{et}}(X_0(\mathbb{K}),\mathbb{V}).$$

Two elements Γ_1, Γ_2 of $Z_p(X_0(\mathbb{K}))$ is numerically equivalent if

$$\mathcal{P}_R(\Gamma_1) \cap \mathcal{P}_R(\Gamma_2) = \mathcal{P}_R(\Gamma_1) \cup \mathcal{P}_R(\Gamma_2)$$

for any $\Delta \in Z_{n-p}(X_0(\overline{\mathbb{K}}))$. In this case we write $\Gamma_1 \sim \Gamma_2$. Let \mathcal{V} be the induced reduced subscheme of $X_0(\mathbb{C})$ from a reduced subscheme of $X_0(\mathbb{K})$ via ι. Then no K-rational point of \mathcal{V} is in the singular locus of $X_0(\mathbb{C})$. From the definitions it is easy to prove

$$(Z_p(X_0(K))/ \sim) = (Z_p(X_0(\overline{\mathbb{K}}))/ \sim)^{\text{Gal}(\overline{\mathbb{K}}/K)} = (C_p((X_0)_\mathbb{C})^{\text{et}})^{\text{Gal}(\overline{\mathbb{K}}/K)}$$

and

$$H^{n-p,n-p}_{\text{et}}(X_0(\overline{\mathbb{K}}),\mathbb{V})^{\text{Gal}(\overline{\mathbb{K}}/K)} = (H^{n-p,n-p}_{\text{et}}((X_0)_\mathbb{C},\mathbb{V})^{\text{et}})^{\text{Gal}(\overline{\mathbb{K}}/K)}.$$
The following theorem, of which expression is slightly changed, is given in [2], Chapter VII, Section 14, (14.1) Theorem.

Theorem 5. Let \(H^2(X, \mathbb{Q}) \) be the de Rham cohomology group of degree 2 with coefficients in \(\mathbb{Q} \). A compact complex manifold is a smooth projective variety over \(\mathbb{C} \) if and only if there exists a Hodge metric \(\omega_0 \) on \(X \), i.e., there exists a Kähler metric \(\omega_0 \) such that the de Rham cohomology class \([\omega_0]\) \(\in H^2(X, \mathbb{Q}) \).

Let \(X \) be a smooth projective variety over \(\mathbb{C} \) with a Hodge metric \(\omega_0 \) (cf. Theorem 5). The following, of which expression is slightly changed, is given in [2], Chapter VI, Section 8.2, (8.5) Hodge decomposition theorem.

Theorem 6. Let \(H^k(X, \mathbb{C}) \) be the de Rham cohomology group of degree \(k \). Then
\[
H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X, \mathbb{C}),
\]
where \(H^{p,q}(X, \mathbb{C}) \) is the set of de Rham cohomology classes defined by \((p,q)\)-forms on \(X \).

Let \(0 \leq p \leq n := \dim X \) be an integer. An analytic \(p \)-cycle is a finite formal \(\mathbb{Q} \)-linear combination \(\sum c_l \Gamma_l \) \((c_l \in \mathbb{Q})\) of irreducible \(p \)-dimensional complex analytic subvarieties \(\{\Gamma_l\} \).

Definition 7. Let \(Y \subset X \). The restrictions to \(Y \) of global analytic \(p \)-cycles \(\Gamma = \sum c_l \Gamma_l \) are \(\Gamma \cap Y := \sum c_l (\Gamma_l \cap Y) \).

Definition 8. Let \(Y \subset X \). Two restrictions \(\Delta_1, \Delta_2 \) to \(Y \) of global analytic \(p \)-cycles are equivalent if
\[
\int_{\Delta_1} \eta = \int_{\Delta_2} \eta.
\]
for any closed \((p,p)\)-form \(\eta \) on \(X \). Let \(C_p(Y) \) be the set of equivalence classes defined by the restrictions to \(Y \) of global analytic \(p \)-cycles.

Remark 9. The set of equivalence classes of analytic \(p \)-cycles on \(X \) is the set of de Rham cohomology classes of analytic \(p \)-cycles on \(X \). Thus the old and the new definitions of \(C_p(X) \) coincide.

A complexified analytic \(p \)-cycle is a formal \(\mathbb{C} \)-linear combination \(\sum c_l \Gamma_l \) \((c_l \in \mathbb{C})\) of irreducible \(p \)-dimensional complex analytic subvarieties \(\{\Gamma_l\} \).

Definition 10. Let \(Y \subset X \). The restrictions to \(Y \) of global complexified analytic \(p \)-cycles \(\Gamma = \sum c_l \Gamma_l \) are \(\Gamma \cap Y := \sum c_l (\Gamma_l \cap Y) \).
Definition 11. Let \(Y \subset X \). Two restrictions \(\Delta_1, \Delta_2 \) to \(Y \) of global complexified analytic \(p \)-cycles are equivalent if
\[
\int_{\Delta_1} \eta = \int_{\Delta_2} \eta.
\]
for any closed \((p,p)\)-form \(\eta \) on \(X \). Let \(C_p(Y) \otimes \mathbb{C} \) be the set of equivalence classes defined by the restrictions to \(Y \) of global complexified analytic \(p \)-cycles.

Let \(1 \leq p \leq n-1 \) be an integer. Let \(B_r(x) \) denote a closed ball with boundary in some coordinate and \(\mathcal{W} \) be the set of such balls, that is, \(U \in \mathcal{W} \) if there exist \(z_1 \in X \) and a coordinate \(x_1 \) around \(z_1 \) such that \(U = \{||x_1|| \leq r_1\} \) for some \(r_1 > 0 \). Let
\[
\mathcal{W}|_{B_r(x)^0} := \{U \subset B_r(x)^0 \mid x \in U^0, U \in \mathcal{W}\}.
\]

Definition 12. Two restrictions \(\omega_1, \omega_2 \) to \(B_r(x)^0 \) of global harmonic forms are equivalent if
\[
\int_{B_r(x)^0} \omega_1 \wedge \eta = \int_{B_r(x)^0} \omega_2 \wedge \eta
\]
for any closed form \(\eta \) on \(X \). Let \(H^{*,*}(B_r(x)^0, \mathbb{C}) \) be the set of equivalence classes of the restrictions to \(B_r(x)^0 \) of global harmonic \((*,*)\)-forms.

Lemma 13. Let \(x \in X \). There exists a closed ball \(B_r(x) \) of center \(x \in X \) and sufficiently small radius \(r > 0 \) such that for any point \(z_0 \in B_r(x)^0 \) and for some coordinate of \(B_r(x)^0 \) there exist an \((n-p)\)-dimensional complex linear subspace \(M \) in \(B_r(x)^0 \) through the origin and a \(p \)-dimensional complex linear subspace \(L \) in \(B_r(x)^0 \) orthogonal to \(M \) through \(z_0 \) which extends to a global analytic \(p \)-cycle.

Proof. Embed \(X \subset \mathbb{P}^N (N >> 0) \) and consider a closed ball of center \(x \in X \subset \mathbb{P}^N \) and sufficiently small radius \(r > 0 \) in \(\mathbb{P}^N \). The intersection of the ball and \(X \) is a closed ball \(B_r(x) \) in \(X \) of center \(x \in X \) and radius \(r \). Consider hyperplanes \(H_1, \ldots, H_{n-p} \) through \(z_0 \) in \(\mathbb{P}^N \). Then since \(r > 0 \) is sufficiently small there exist such hyperplanes such that \(H_1 \cap \cdots \cap H_{n-p} \cap X \) is a global analytic \(p \)-cycle on \(X \) and does not go through \(x \) and such that \((H_1 \cap \cdots \cap H_{n-p} \cap X) \cap B_r(x)^0 \) is a manifold. Take such global analytic \(p \)-cycle of the form \(H_1 \cap \cdots \cap H_{n-p} \cap X \) as \(L \). The remaining statement is easy. The assertion follows.

Lemma 14. \(C_{n-s}(B_r(x)^0) \otimes \mathbb{C} \subset H^{s,s}(B_r(x)^0, \mathbb{C}) \).

Proof. Extend a complexified \((n-s)\)-cycle \(\Gamma \) to \(X \) and there exists a global harmonic \((s,s)\)-form \(\Omega \) on \(X \) such that
\[
\int_{\Gamma} \Xi = \int_{X} \Omega \wedge \Xi
\]
for any closed \((n-s,n-s)\)-form \(\Xi \) on \(X \). Thus \([\Gamma]|_{B_r(x)^0} = [\Omega]|_{B_r(x)^0}\), and the assertion follows.
Definition 15. Let V, W and E be vector spaces. A bilinear map $\Phi : V \times W \to E$ is nondegenerate if

$$\Phi(v, w) = 0 \ (\forall w \in W) \Rightarrow v = 0$$

(31)

and

$$\Phi(v, w) = 0 \ (\forall v \in V) \Rightarrow w = 0.$$

(32)

Let $[\Gamma] \in C_p(B_r(x)^o) \otimes \mathbb{C}$ and $[\eta] \in H^{p,p}(B_r(x)^o, \mathbb{C})$. Let

$$\int_{\Gamma} [\eta] := \{(U, \frac{1}{|U|} \int_U [\Gamma]|u \wedge [\eta]|u)\}_{u \in \mathcal{W}|_{B_r(x)^o}}.$$

(33)

Lemma 16. There exists a closed ball $B_r(x)$ of center $x \in X$ and sufficiently small radius $r > 0$ such that the map

$$C_p(B_r(x)^o) \otimes \mathbb{C} \times H^{p,p}(B_r(x)^o, \mathbb{C}) \to \text{Map}(\mathcal{W}|_{B_r(x)^o}, \mathbb{C})$$

(34)

$$([\Gamma], [\eta]) \mapsto \int_{\Gamma} [\eta],$$

(35)

is a nondegenerate bilinear map. Further it suffices to consider $[\Gamma]$ defined by the restrictions of global analytic p-cycles of which components are smooth on $B_r(x)^o$.

Proof. By Lemma 13 there exists a closed ball $B_r(x)$ of center $x \in X$ and sufficiently small radius $r > 0$ such that for any point $z_0 \in B_r(x)^o$ and for some coordinate of $B_r(x)^o$ there exist an $(n - p)$-dimensional complex linear subspace M in $B_r(x)^o$ through the origin and a p-dimensional complex linear subspace L in $B_r(x)^o$ orthogonal to M through z_0 which extends to a global analytic p-cycle. Let $[\eta] \in H^{p,p}(B_r(x)^o, \mathbb{C})$. Let $z_0 \in B_r(x)^o$. Divide $\eta = \alpha_L + \beta$, where $\eta|_{z_0 + L(z_0)} = \alpha_L(z_0)$ for any z_0 near z_0. Assume $\alpha_L(z_0) \neq 0$ then it is obvious that

$$\int_{L \cap B_{|z_0| + \epsilon}(x)} \eta \neq 0 \ (\epsilon > 0 \text{ is small}).$$

(36)

This contradiction shows $\alpha_L(z_0) = 0$ and $\eta(z_0) = \beta(z_0)$. Change coordinates and consider all such L (cf. the proof of Lemma 13). Combining the resulting formulas it is, by an elementary argument of exterior algebra, obtained that $\eta(z_0) = 0$. Since $z_0 \in B_r(x)^o$ is arbitrary it follows that $[\eta] = 0$. Now it is proved that

$$\int_{\Gamma} [\eta] = \{(U, \frac{1}{|U|} \int_U [\Gamma]|u \wedge [\eta]|u)\}_{u \in \mathcal{W}|_{B_r(x)^o}} = \{(U, 0)\}_{u \in \mathcal{W}|_{B_r(x)^o}}$$

(37)

$$ (\forall [\Gamma] \in C_p(B_r(x)^o) \otimes \mathbb{C})$$

$$\Rightarrow [\eta] = 0.$$

(38)

(39)
By Lemma 14 $C_{n-p}(B_r(x)\circlearrowleft) \otimes \mathbb{C} \subset H^{p,p}(B_r(x)\circlearrowleft, \mathbb{C})$ and $C_p(B_r(x)\circlearrowleft) \otimes \mathbb{C} \subset H^{n-p,n-p}(B_r(x)\circlearrowleft, \mathbb{C})$. Thus reversing the roles and considering $[\Gamma]$ corresponding to the restriction to $B_r(x)\circlearrowleft$ of a global harmonic form as an element of $H^{n-p,n-p}(B_r(x)\circlearrowleft, \mathbb{C})$ it follows that

$$
\int_{\Gamma} [\Gamma] = \{(U, \frac{1}{|U|} \int_{\Omega} [\Gamma]|u \wedge [\Gamma]|u)\}_{u \in \mathcal{W}|_{B_r(x)\circlearrowleft}} = \{(U, 0)\}_{u \in \mathcal{W}|_{B_r(x)\circlearrowleft}} \quad (40)
$$

$$(\forall [\Gamma] \in C_{n-p}(B_r(x)\circlearrowleft) \otimes \mathbb{C}) \quad (41)
$$

$$
\Rightarrow [\Gamma] = 0. \quad (42)
$$

The above two show the map (34)-(35) is a nondegenerate bilinear map. Further it suffices to consider $[\Gamma]$ defined by the restrictions of global analytic p-cycles of which components are smooth on $B_r(x)\circlearrowleft$. The assertion follows. \[\square\]

The following, of which expression is slightly changed, is given in [2], Chapter VI, Section 3.3, (3.17) Hodge isomorphism theorem.

Theorem 17. Let X be a smooth projective variety over \mathbb{C} or, more generally, a compact complex manifold. Let $\mathcal{H}^k(X, \mathbb{C})$ be the set of harmonic k-forms on X. Then $\mathcal{H}^k(X, \mathbb{C})$ is finite dimensional and each de Rham cohomology class is uniquely represented by a harmonic form. In particular $H^k(X, \mathbb{C}) \simeq \mathcal{H}^k(X, \mathbb{C})$.

Let ω be a global harmonic $(n-p,n-p)$-form on X such that $[\omega] \in H^{n-p,p-en-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q})$. Observe that the set of harmonic forms on X and thus $C_\alpha(B_r(x)\circlearrowleft)$ and $H^{\ast\ast}(B_r(x)\circlearrowleft, \mathbb{C})$ are finite dimensional (see Theorem 6 and Theorem 17).

Definition 18. The tangent space of a C^1-manifold Δ at $x \in \Delta$ is denoted by $T_x \Delta$. Two finite formal C-combinations $\sum c_l \Gamma_l$, $\sum c'_{l'} \Gamma'_{l'}$ ($c_l, c'_{l'} \in \mathbb{C}$) of C^1-manifolds $\{\Gamma_l\}$, $\{\Gamma'_{l'}\}$ intersect transversally if $T_x \Gamma_l \nsubseteq T_x \Gamma'_{l'}$ and $T_x \Gamma_l \nsubseteq T_x \Gamma'_{l'}$ for any l, l' and for any $x \in \Gamma_l \cap \Gamma'_{l'}$.

Lemma 19. There exist a finite cover $\{U_\lambda\}_{\lambda=1}^\Lambda$ consisting of closed balls with boundary and $[\Gamma_\lambda] \in C_p(U_\lambda) \otimes \mathbb{C}$ ($1 \leq \lambda \leq \Lambda$) defined by the restriction of a global analytic p-cycle of which components are smooth on U_λ satisfying the following: (i) for any global harmonic (p,p)-form η on X

$$
\int_{\Gamma_\lambda} [\eta]|_{U_\lambda} = \int_{U_\lambda} [\omega]|_{U_\lambda} \wedge [\eta]|_{U_\lambda}, \quad (43)
$$

and (ii) if $U_\lambda \cap U_\mu \neq \emptyset$ then for any global harmonic (p,p)-form η on X

$$
\int_{\Gamma_\lambda \cap U_\mu} [\eta]|_{U_\lambda \cap U_\mu} = \int_{\Gamma_\mu \cap U_\lambda} [\eta]|_{U_\lambda \cap U_\mu}. \quad (44)
$$

Furthermore the above are taken so that Γ_λ and ∂U_λ intersect transversally.
Proof. Since $C_p(B_r(x)^\circ) \otimes \mathbb{C} \subset H^{n-p,n-p}(B_r(x)^\circ, \mathbb{C})$ there exists a pairing

$$H^{n-p,n-p}(B_r(x)^\circ, \mathbb{C}) \times H^{p-p}(B_r(x)^\circ, \mathbb{C}) \to \text{Map}(\mathfrak{M}_{B_r(x)^\circ}, \mathbb{C})$$ (45)

extending the map (34)-(35). By Lemma 16 this new pairing is also nondegenerate. Observe that the old pairing is nondegenerate and $H^{n-p,n-p}(B_r(x)^\circ, \mathbb{C})$ and $H^{p-p}(B_r(x)^\circ, \mathbb{C})$ are finite dimensional. Thus it follows by linear algebra that $C_p(B_r(x)^\circ) \otimes \mathbb{C} = H^{n-p,n-p}(B_r(x)^\circ, \mathbb{C})$.

From above there exists $[\Gamma_x] \in C_p(B_r(x)^\circ)$ for each $x \in X$ such that for any $U \in \mathfrak{M}_{B_r(x)^\circ}$

$$\int_U [\Gamma_x]|_U \wedge [\eta]|_U = \int_U [\omega]|_U \wedge [\eta]|_U \quad (\forall [\eta] \in H^{p-p}(B_r(x)^\circ, \mathbb{C})).$$ (46)

In particular $[\Gamma_x]$ is such that

$$\int_{B_r(x)} [\Gamma_x]|_{B_r(x)} \wedge [\eta]|_{B_r(x)} = \int_{B_r(x)} [\omega]|_{B_r(x)} \wedge [\eta]|_{B_r(x)}$$

$$\quad (\forall [\eta] \in H^{p-p}(B_r(x)^\circ, \mathbb{C}) \ (0 < r' << r)).$$ (47)

Further $[\Gamma_x]$ is taken to be an equivalence class defined by the restriction of a global analytic p-cycle of which components are smooth on $B_r(x)^\circ$. Thus since X is compact there exist a finite cover $\{U_\lambda\}_{\lambda=1}^\Lambda$ consisting of closed balls with boundary and $[\Gamma_\lambda] \in C_p(U_\lambda) \otimes \mathbb{C} \ (1 \leq \lambda \leq \Lambda)$ defined by the restriction of a global analytic p-cycle of which components are smooth on U_λ satisfying the following: (i) for any global harmonic (p,p)-form η on X

$$\int_{\Gamma_\lambda} [\eta]|_{U_\lambda} = \int_{U_\lambda} [\omega]|_{U_\lambda} \wedge [\eta]|_{U_\lambda}$$ (50)

and (ii) if $U_\lambda \cap U_\mu \neq \emptyset$ then for any global harmonic (p,p)-form η on X

$$\int_{\Gamma_\lambda \cap U_\mu} [\eta]|_{U_\lambda \cap U_\mu} = \int_{\Gamma_\mu \cap U_\lambda} [\eta]|_{U_\lambda \cap U_\mu}.$$ (51)

Since Γ_λ’s are smooth, by shrinking U_λ’s, the above are taken so that Γ_λ and ∂U_λ intersect transversally. The assertion follows. \qed

{\{[\Gamma_\lambda]\}_{\lambda=1}^\Lambda} defines a de Rham cohomology class $[\omega]$.

Lemma 20. There exists an equivalence class defined by the restriction Γ of a global complexified analytic p-cycle of which components are smooth on $U_1 \cup \cdots \cup U_\lambda$ such that $([\Gamma] - [\omega])|_{U_1 \cup \cdots \cup U_\lambda} = 0$ and that Γ intersects with $\partial(U_1 \cup \cdots \cup U_\lambda)$ transversally.
Proof. We prove the assertion by induction on \(\lambda \).

When \(\lambda = 1 \). Define \(\Gamma := \Gamma_1 \) on \(U_1 \) and then \([\Gamma]|_{U_1} = [\Gamma_1] = [\omega]|_{U_1} \). We note that \(\Gamma_1 \) is taken so that each component of \(\Gamma_1 \) is smooth on \(U_1 \) and that \(\Gamma \) intersects with \(\partial U_1 \) transversally. The assertion follows.

Assume for \(\lambda - 1 \) the assertion holds. There exists an equivalence class defined by the restriction \(\Delta \) of a global complexified analytic \(p \)-cycle which components are smooth on \(U_1 \cup \cdots \cup U_{\lambda-1} \) such that \(([\Delta] - [\omega])|_{U_1 \cup \cdots \cup U_{\lambda-1}} = 0 \) and that \(\Delta \) intersects with \(\partial(U_1 \cup \cdots \cup U_{\lambda-1}) \) transversally. The restrictions \(\Delta, \Gamma_\lambda \) of global complexified analytic \(p \)-cycles correspond to those \(\Psi, \Phi_\lambda \) of global harmonic \((n - p, n - p) \)-forms. By construction \(([\Psi] - [\omega])|_{U_1 \cup \cdots \cup U_{\lambda-1}} \cap U_\lambda = ([\Delta] - [\omega])|_{U_1 \cup \cdots \cup U_{\lambda-1}} \cap U_\lambda = 0 \). It follows that \(\Psi|_{U_1 \cup \cdots \cup U_{\lambda-1}} \cap U_\lambda - \Phi_\lambda|_{U_1 \cup \cdots \cup U_{\lambda-1}} \cap U_\lambda = 0 \). Define

\[
\Phi := \begin{cases}
\Psi \text{ (on } U_1 \cup \cdots \cup U_{\lambda-1}) \\
\Phi_\lambda + (\Psi - \Phi_\lambda) \text{ (on } (U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \\
\Phi_\lambda \text{ (on } U_\lambda \setminus U_1 \cup \cdots \cup U_{\lambda-1})
\end{cases}
\]

By the inductive assumption RHS is well-defined. Let \(\gamma \) be a complex analytic variety appearing in \(\Delta \cap ((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) - \Gamma_\lambda \cap ((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \). Observe that

\[
\int_{\partial((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda)} ([\Psi]|_{U_1 \cup \cdots \cup U_{\lambda-1}} \cap U_\lambda - [\Phi_\lambda]|_{U_1 \cup \cdots \cup U_{\lambda-1}} \cap U_\lambda) \wedge \theta
\]

\[
= \int_{\partial((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda)} 0 \wedge \theta
\]

\[
= 0
\]

for any \((2p - 1)\)-form \(\theta \) and \(\gamma \cap \partial((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \) is of measure 0 on \(\partial((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \).

Observe that each component of \(\Delta \) (resp. \(\Gamma_\lambda \)) is smooth on \(U_1 \cup \cdots \cup U_{\lambda-1} \) (resp. \(U_\lambda \)). Recall that, for any \(\mu \), \(\Gamma_\mu \) is taken so that \(\Gamma_\mu \) intersects with \(\partial U_\mu \) transversally (see Lemma 19). Thus \(\Delta \) intersects with \(\partial(U_1 \cup \cdots \cup U_{\lambda-1}) \) transversally and \(\Gamma \lambda \) does with \(\partial U_\lambda \) transversally. If one component \(\delta \) of \(\Delta \) and one component \(\delta_\lambda \) of \(\Gamma_\lambda \) are such that \(T_x \delta \neq T_x \delta_\lambda \) for some \(x \in \delta \cap \delta_\lambda \cap \partial(U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda \) then \(\dim(\delta \cap \delta_\lambda) < p \). On the other hand \(\delta \cap \partial(U_1 \cup \cdots \cup U_{\lambda-1}) \) and \(\delta_\lambda \cap \partial U_\lambda \) are empty or of real dimension \((2p - 1)\). Thus the above measure property shows a contradiction and the union of the tangent spaces (and the base spaces) of components of \(\Delta \) on \(\partial((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \) and that of those of components of \(\Gamma_\lambda \) on \(\partial((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \) coincide. Further, from this, the above measure property shows that the coefficients of \(\Delta \cap ((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \) and \(\Gamma \lambda \cap ((U_1 \cup \cdots \cup U_{\lambda-1}) \cap U_\lambda) \) coincide. Let

\[
\Gamma := \begin{cases}
\Delta \text{ (on } U_1 \cup \cdots \cup U_{\lambda-1}) \\
\Gamma_\lambda \text{ (on } U_\lambda \setminus (U_1 \cup \cdots \cup U_{\lambda-1}))
\end{cases}
\]
\(\Gamma \) intersects with \((\partial(U_1 \cup \cdots \cup U_{\lambda-1})) \cap U_{\lambda}\) transversally so that any component of \(\Gamma \) is locally a graph of \(C^1 \)-functions that are holomorphic outside a proper smooth manifold. By taking limit it is obvious that the functions satisfy Cauchy-Riemann equations and hence any component of \(\Gamma \) is smooth complex analytic on \(U_1 \cup \cdots \cup U_{\lambda} \). We note that \(\Gamma \) intersects with \(\partial(U_1 \cup \cdots \cup U_{\lambda}) \) transversally. The assertion follows. \(\square \)

Lemma 21. There exists a natural nondegenerate pairing

\[
H^{2(n-p)}(X, \mathbb{Q}) \times H^{2p}(X, \mathbb{Q}) \to \mathbb{Q}.
\]

(57)

Proof. \(X \) is a smooth projective variety over \(\mathbb{C} \) with the Hodge metric \(\omega_0 \) so that

\[
*1 \in H^{2n}(X, \mathbb{Q}),
\]

(58)

where \(* \) is the Hodge’s star operator with respect to \(\omega_0 \). Thus there exists a natural nondegenerate pairing

\[
H^{2(n-p)}(X, \mathbb{Q}) \times H^{2p}(X, \mathbb{Q}) \to \mathbb{Q}
\]

(59)

\[
([\Theta], [\Xi]) \mapsto <[\Theta], [\Xi]>_{\omega_0},
\]

(60)

where

\[
<[\Theta], [\Xi]>_{\omega_0} *1 = [\Theta] \cup [\Xi].
\]

(61)

The assertion follows. \(\square \)

Proof of Theorem 1. It is clear that

\[
C_p(X) \subset H^{n-p,n-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q}).
\]

(62)

Thus it suffices to show the other inclusion. Let \([\omega] \in H^{n-p,n-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q})\). \(X = U_1 \cup \cdots \cup U_\lambda \) and by Lemma 20 it is concluded that there exists a de Rham cohomology class \([\Gamma]\) (cf. Theorem 17) defined by a complexified analytic \(p \)-cycle such that \([\Gamma] - [\omega] = 0\) on \(X \). Thus

\[
[\Gamma] = [\omega] \in H^{n-p,n-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q}).
\]

(63)

Assume each \([\Gamma_i]\) corresponds to a \(p \)-dimensional irreducible complex analytic subvariety and that \([\{[\Gamma_i]\}]\) forms a basis of \(C_p(X) \). Express \([\Gamma]\) as

\[
[\Gamma] = \sum_i c_i [\Gamma_i] \ (c_i \in \mathbb{C}).
\]

(64)

Extend \([\{[\Gamma_i]\}]\) to a basis of \(H^{n-p,n-p}(X, \mathbb{C}) \cap H^{2(n-p)}(X, \mathbb{Q})\) and then by Lemma 21, formula (62) and formula (63) it is obtained by linear algebra that \(c_i \in \mathbb{Q} \) (\(\forall i \)). Thus \(\Gamma \) is in fact an analytic \(p \)-cycle on \(X \). The assertion follows. \(\square \)
3 Proof of Theorem 2

Let \(a, b \) be distinct prime numbers. Let \(K \supset F_a \) be a field of finite extension of \(F_a \). Let \(\mathbb{V} \) be a representation of \(\text{Gal}(\overline{Q}/Q_b) \) over \(Q_b \). Let \(X_0 \) be a smooth projective scheme over \(K \). Let \(X_0(K) \) be the set of \(K \)-rational points of \(X_0 \).

Definition 22. A reduced subscheme \(\mathcal{W} \) of \(X_0(K) \) is of dimension \(p \) at \(x \in \mathcal{W} \) if it is locally defined by \(K \)-coefficiential regular functions \(P_1, \ldots, P_{n-p} \) around \(x \) and, letting \(\mathbb{P} := (P_1, \ldots, P_{n-p}) \), the Jacobian matrix of \(\mathbb{P} \) at \(x \) is of rank \(n - p \). In this case we write \(\dim_x \mathcal{W} = p \). A reduced subscheme \(\mathcal{W} \) of \(X_0(K) \) is of dimension \(p \) if \(\sup \dim_x \mathcal{W} = p \).

Let \(Z_p(X_0(K)) \) be the set of formal \(\mathbb{V} \)-linear combinations of irreducible \(p \)-dimensional reduced subschemes of \(X_0(K) \). Let \(\overline{K} \) be the algebraic separable closure of \(K \) and \(X_0(\overline{K}) \) the set of \(\overline{K} \)-rational points of \(X_0 \). Let \(\mathfrak{O}_{\overline{K}} \) be the ring of integers of \(\overline{K} \). Let \(\mathfrak{a} \subset \mathfrak{O}_{\overline{K}} \) be a maximal ideal such that \(\mathfrak{a} \cap \mathbb{Z} = a\mathbb{Z} \).

There exists a natural surjective map from the quotient field of \(\mathfrak{O}_{\overline{K}}/a \) to \(\overline{K} \). For \(\sigma \in \text{Gal}(\overline{Q}/Q) \) such that \(\sigma(a) \subset a \) let \(\sigma \in \text{Gal}(K/F_a) \) be the induced element. Let

\[
I_\mathfrak{a} := \{ \sigma \in \text{Gal}(\overline{Q}/Q) \mid \sigma(a) \subset a \text{ and } \sigma = \text{id} \}.
\]

Let \(C^{I_\mathfrak{a}} := \overline{\mathbb{Q}}^{I_\mathfrak{a}} \). Let \(\iota : K \hookrightarrow \overline{\mathbb{Q}}^{I_\mathfrak{a}} \hookrightarrow \overline{Q} \). Let \(X_0(C) \) be the set of \(C \)-rational points of the reduced scheme induced from \(X_0(K) \) via \(\iota \). Let \((X_0)_C \to X(C) \) be the resolution of singularity. Let \(Z_p((X_0)_C) \) be the set of formal \(\mathbb{V} \)-linear combinations of irreducible \(p \)-dimensional reduced subschemes of \((X_0)_C \). By Theorem 1 it is easy to prove

\[
Z_p((X_0)_C) \to H^{n-p,n-p}_\text{ét}(X_0)_C, \mathbb{V})
\]

is surjective. Let \(C_p((X_0)_C) \) be the image of \(Z_p((X_0)_C) \) under this map. Let \(H^{n-p,n-p}_\text{ét}(X_0(\overline{K}), \mathbb{V}) \) be the image of the map

\[
H^{n-p,n-p}_\text{ét}(X_0)_C, \mathbb{V}) \to H^{n-p,n-p}_\text{ét}(X_0)_C, \mathbb{V}) \to H^{n-p,n-p}_\text{ét}(X_0(\overline{K}), \mathbb{V})
\]

Let \(\text{Gal}(\overline{K}/K) \) act on the set \(C_p((X_0)_C)^{I_\mathfrak{a}} \) naturally. This induces an action of \(\text{Gal}(\overline{K}/K) \) on \(H^{n-p,n-p}_\text{ét}(X_0(\overline{K}), \mathbb{V}) \) via the surjective map

\[
\begin{align*}
C_p((X_0)_C) & \quad\to \quad H^{n-p,n-p}_\text{ét}(X_0)_C, \mathbb{V}) \quad\to\quad H^{n-p,n-p}_\text{ét}(X_0(\overline{K}), \mathbb{V})^{I_\mathfrak{a}} \\
C_p((X_0)_C)^{I_\mathfrak{a}} & \quad\to\quad H^{n-p,n-p}_\text{ét}(X_0(\overline{K}), \mathbb{V}).
\end{align*}
\]

Definition 23. Let

\[
\mathcal{P}_K : \quad Z_p((X_0)_C) \quad\to\quad H^{n-p,n-p}_\text{ét}(X_0)_C, \mathbb{V}) \\
Z_p(X_0(K)) \quad\to\quad H^{n-p,n-p}_\text{ét}(X_0(\overline{K}), \mathbb{V})^{\text{Gal}(\overline{K}/K)}. \quad (69)
\]
Two elements Γ_1, Γ_2 of $Z_p(X_0(K))$ is numerically equivalent if

$$\mathcal{P}_K(\Gamma_1) \cup \mathcal{P}_K(\Delta) = \mathcal{P}_K(\Gamma_2) \cup \mathcal{P}_K(\Delta)$$

(70)

for any $\Delta \in Z_{n-p}(X_0(K))$. In this case we write $\Gamma_1 \sim \Gamma_2$.

Definition 24. Let

$$\mathcal{P}_{\overline{K}} : \quad Z_p((X_0)_C) \rightarrow H_{\text{et}}^{n-p,n-p}((X_0)_C, V) \quad \uparrow \quad H_{\text{et}}^{n-p,n-p}(X_0(\overline{K}), V).$$

(71)

Two elements Γ_1, Γ_2 of $Z_p(X_0(\overline{K}))$ is numerically equivalent if

$$\mathcal{P}_{\overline{K}}(\Gamma_1) \cup \mathcal{P}_{\overline{K}}(\Delta) = \mathcal{P}_{\overline{K}}(\Gamma_2) \cup \mathcal{P}_{\overline{K}}(\Delta)$$

(72)

for any $\Delta \in Z_{n-p}(X_0(\overline{K}))$. In this case we write $\Gamma_1 \sim \Gamma_2$.

Lemma 25. Let \mathcal{V} be the induced reduced subscheme of $X_0(\mathbb{C})$ from a reduced subscheme of $X_0(K)$ via ι. Then no K-rational point of \mathcal{V} is in the singular locus of $X_0(\mathbb{C})$.

Proof. By assumption any point in the image of $X_0(K)$ is smooth. The set of K-rational points of \mathcal{V} are contained in the set of such points and the assertion follows. \qed

Proof of Theorem 2. Let $H_{\text{et}}^{n-p,n-p}(X_0(\mathbb{C}), V)$ be the image of the map

$$H_{\text{et}}^{n-p,n-p}((X_0)_C, V) \rightarrow H_{\text{et}}((X_0)_C, V) \rightarrow H_{\text{et}}(X_0(\mathbb{C}), V).$$

(73)

Let $C_p(X_0(\mathbb{C}))$ be the image of the map

$$Z_p((X_0)_C) \rightarrow H_{\text{et}}^{n-p,n-p}((X_0)_C, V) \quad \uparrow \quad Z_p(X_0(\mathbb{C})) \rightarrow H_{\text{et}}^{n-p,n-p}(X_0(\mathbb{C}), V).$$

(74)

By Lemma 25 no component of an element of

$$(C_p(X_0(\mathbb{C}))^I_a)^{\text{Gal}(\overline{K}/K)}$$

(75)

intersects with the singular locus of $X_0(\mathbb{C})$. It is obtained that

$$(C_p(X_0(\mathbb{C}))^I_a)^{\text{Gal}(\overline{K}/K)} = (C_p((X_0)_C)^I_a)^{\text{Gal}(\overline{K}/K)}.$$

(76)

From the definitions it is easy to prove

$$(Z_p(X_0(K))/\sim) = (Z_p(X_0(\overline{K}))/\sim)^{\text{Gal}(\overline{K}/K)}$$

(77)

$$= (C_p(X_0(\mathbb{C}))^I_a)^{\text{Gal}(\overline{K}/K)} = (C_p((X_0)_C)^I_a)^{\text{Gal}(\overline{K}/K)}$$

(78)
and

\[H_{\text{et}}^{n-p,n-p}(X_0(\overline{K}), \mathbb{V})^{\text{Gal}(\overline{K}/K)} = (H_{\text{et}}^{n-p,n-p}((X_0)_C, \mathbb{V})^I_{\text{et}})^{\text{Gal}(\overline{K}/K)}. \]

(79)

Thus the cycle map

\[
\begin{align*}
C_p((X_0)_C) & \rightarrow H_{\text{et}}^{n-p,n-p}((X_0)_C, \mathbb{V}) \\
\uparrow & \\
Z_p(X_0(K)) & \sim H_{\text{et}}^{n-p,n-p}(X_0(\overline{K}), \mathbb{V})^{\text{Gal}(\overline{K}/K)}
\end{align*}
\]

(80)

is surjective and the assertion follows.

\[\square \]

4 Appendix

Let \(K \supset \mathbb{Q} \) be a field of finite extension of \(\mathbb{Q} \). Let \(\mathbb{V} \) be a representation of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) over \(\mathbb{Q} \). Let \(X_0 \) be a smooth projective scheme over \(K \). Let \(X_0(K) \) be the set of \(K \)-rational points of \(X_0 \).

Definition 26. A reduced subscheme \(\mathcal{W} \) of \(X_0(K) \) is of dimension \(p \) at \(x \in \mathcal{W} \) if it is locally defined by \(K \)-coefficiential regular functions \(P_1, \ldots, P_{n-p} \) around \(x \) and, letting \(\mathbb{P} := (P_1, \ldots, P_{n-p}) \), the Jacobian matrix of \(\mathbb{P} \) at \(x \) is of rank \(n - p \). In this case we write \(\dim_x \mathcal{W} = p \). A reduced subscheme \(\mathcal{W} \) of \(X_0(K) \) is of dimension \(p \) if \(\sup \dim_x \mathcal{W} = p \).

Let \(Z_p(X_0(K)) \) be the set of formal \(\mathbb{V} \)-linear combinations of irreducible \(p \)-dimensional reduced subschemes of \(X_0(K) \). Let \(X_0(\overline{\mathbb{Q}}) \) be the set of \(\overline{\mathbb{Q}} \)-rational points of \(X_0 \). Let \(\iota : K \rightarrow \overline{\mathbb{Q}} \). Let \(X_0(\mathbb{C}) \) be the set of \(\mathbb{C} \)-rational points of the reduced scheme induced from \(X_0(K) \) via \(\iota \). Let \((X_0)_C \rightarrow X(\mathbb{C}) \) be the resolution of singularity. Let \(Z_p((X_0)_C) \) be the set of formal \(\mathbb{V} \)-linear combinations of irreducible \(p \)-dimensional reduced subschemes of \((X_0)_C \). By Theorem 1 it is easy to prove

\[Z_p((X_0)_C) \rightarrow H_{\text{et}}^{n-p,n-p}((X_0)_C, \mathbb{V}) \]

(81)

is surjective. Let \(C_p((X_0)_C) \) be the image of \(Z_p((X_0)_C) \) under this map. Let \(H_{\text{et}}^{n-p,n-p}(X_0(\overline{\mathbb{Q}}), \mathbb{V}) \) be the image of the map

\[H_{\text{et}}^{n-p,n-p}((X_0)_C, \mathbb{V}) \rightarrow H_{\text{et}}((X_0)_C, \mathbb{V}) \rightarrow H_{\text{et}}(X_0(\overline{\mathbb{Q}}), \mathbb{V}). \]

(82)

Let \(\text{Gal}(\mathbb{C}/K) \) act on the set \(C_p((X_0)_C) \) naturally. This induces an action of \(\text{Gal}(\overline{\mathbb{Q}}/K) \) on \(H_{\text{et}}^{n-p,n-p}(X_0(\overline{\mathbb{Q}}), \mathbb{V}) \) via the surjective map

\[
\begin{align*}
C_p((X_0)_C) & \rightarrow H_{\text{et}}^{n-p,n-p}((X_0)_C, \mathbb{V}) \\
\downarrow & \\
H_{\text{et}}^{n-p,n-p}(X_0(\overline{\mathbb{Q}}), \mathbb{V}).
\end{align*}
\]

(83)
Definition 27. Let
\[
P_K : \begin{array}{l}
Z_p((X_0)_{\mathbb{C}}) \rightarrow H_{et}^{n-p,n-p}((X_0)_{\mathbb{C}}, \mathbb{V})
\end{array}
\]
\[
Z_p(X_0(K)) \rightarrow H_{et}^{n-p,n-p}(X_0(\overline{\mathbb{Q}}), \mathbb{V})^{Gal(\overline{\mathbb{Q}}/K)}.
\]
(84)

Two elements \(\Gamma_1, \Gamma_2 \) of \(Z_p(X_0(K)) \) is numerically equivalent if
\[
P_K(\Gamma_1) \cup P_K(\Delta) = P_K(\Gamma_2) \cup P_K(\Delta)
\]
(85)
for any \(\Delta \in Z_{n-p}(X_0(K)) \). In this case we write \(\Gamma_1 \sim \Gamma_2 \).

Definition 28. Let
\[
P_{\overline{\mathbb{Q}}} : \begin{array}{l}
Z_p((X_0)_{\mathbb{C}}) \rightarrow H_{et}^{n-p,n-p}((X_0)_{\mathbb{C}}, \mathbb{V})
\end{array}
\]
\[
Z_p(X_0(\overline{\mathbb{Q}})) \rightarrow H_{et}^{n-p,n-p}(X_0(\overline{\mathbb{Q}}), \mathbb{V}).
\]
(86)

Two elements \(\Gamma_1, \Gamma_2 \) of \(Z_p(X_0(\overline{\mathbb{Q}})) \) is numerically equivalent if
\[
P_{\overline{\mathbb{Q}}}(\Gamma_1) \cup P_{\overline{\mathbb{Q}}}(\Delta) = P_{\overline{\mathbb{Q}}}(\Gamma_2) \cup P_{\overline{\mathbb{Q}}}(\Delta)
\]
(87)
for any \(\Delta \in Z_{n-p}(X_0(\overline{\mathbb{Q}})) \). In this case we write \(\Gamma_1 \sim \Gamma_2 \).

Lemma 29. Let \(\mathcal{V} \) be the induced reduced subscheme of \(X_0(\mathbb{C}) \) from a reduced subscheme of \(X_0(K) \) via \(\iota \). Then no \(K \)-rational point of \(\mathcal{V} \) is in the singular locus of \(X_0(\mathbb{C}) \).

Proof. By assumption any point in the image of \(X_0(K) \) is smooth. The set of \(K \)-rational points of \(\mathcal{V} \) are contained in the set of such points and the assertion follows. \(\square \)

Theorem 30 (Tate Conjecture). The cycle map
\[
C_p((X_0)_{\mathbb{C}}) \rightarrow H_{et}^{n-p,n-p}((X_0)_{\mathbb{C}}, \mathbb{V})
\]
\[
Z_p(X_0(K))/\sim \rightarrow H_{et}^{n-p,n-p}(X_0(\overline{\mathbb{Q}}), \mathbb{V})^{Gal(\overline{\mathbb{Q}}/K)}
\]
(88)
is surjective.

Proof. Let \(H_{et}^{n-p,n-p}(X_0(\mathbb{C}), \mathbb{V}) \) be the image of the map
\[
H_{et}^{n-p,n-p}((X_0)_{\mathbb{C}}, \mathbb{V}) \rightarrow H_{et}((X_0)_{\mathbb{C}}, \mathbb{V}) \rightarrow H_{et}(X_0(\mathbb{C}), \mathbb{V}).
\]
(89)
Let \(C_p(X_0(\mathbb{C})) \) be the image of the map
\[
Z_p((X_0)_{\mathbb{C}}) \rightarrow H_{et}^{n-p,n-p}((X_0)_{\mathbb{C}}, \mathbb{V})
\]
\[
Z_p(X_0(\mathbb{C})) \rightarrow H_{et}^{n-p,n-p}(X_0(\mathbb{C}), \mathbb{V}).
\]
(90)
By Lemma 29 no component of an element of
\[C_p(X_0(\mathbb{C}))^\text{Gal}(\mathbb{C}/K) \] intersects with the singular locus of \(X_0(\mathbb{C}) \). It is obtained that
\[C_p(X_0(\mathbb{C}))^\text{Gal}(\mathbb{C}/K) = C_p((X_0)_\mathbb{C})^\text{Gal}(\mathbb{C}/K). \] (92)

From the definitions it is easy to prove
\[
(Z_p(X_0(K))/\sim) = (Z_p(X_0(\overline{\mathbb{Q}}))/\sim)^{\text{Gal}(\overline{\mathbb{Q}}/K)} \\
= C_p(X_0(\mathbb{C}))^{\text{Gal}(\mathbb{C}/K)} = C_p((X_0)_\mathbb{C})^{\text{Gal}(\mathbb{C}/K)}
\] (93)

and
\[
H^{n-p,n-p}_\text{et}(X_0(\overline{\mathbb{Q}}), \mathcal{V})^{\text{Gal}(\overline{\mathbb{Q}}/K)} = (H^{n-p,n-p}_\text{et}((X_0)_\mathbb{C}, \mathcal{V})^{\text{Gal}(\mathbb{C}/\overline{\mathbb{Q}})})^{\text{Gal}(\overline{\mathbb{Q}}/K)} \\
= H^{n-p,n-p}_\text{et}((X_0)_\mathbb{C}, \mathcal{V})^{\text{Gal}(\mathbb{C}/K)}.
\] (95)

Thus the cycle map
\[
C_p((X_0)_\mathbb{C}) \rightarrow H^{n-p,n-p}_\text{et}((X_0)_\mathbb{C}, \mathcal{V}) \\
Z_p(X_0(K))/\sim \downarrow \quad \downarrow \\
H^{n-p,n-p}_\text{et}(X_0(\overline{\mathbb{Q}}), \mathcal{V})^{\text{Gal}(\overline{\mathbb{Q}}/K)}
\] (97)

is surjective and the assertion follows.

\[\square \]

References

[1] Pierre Deligne, The Hodge Conjecture
claymath.org/sites/default/files/hodge.pdf [Accessed: 18th January 2017]

[Accessed: 14th February 2016]

[5] Burt Totaro, Recent Progress on the Tate Conjecture
http://dx.doi.org/10.1090/bull/1588 [Accessed: 29th December 2017]